Repton Manor Primary School

$$
\begin{gathered}
\text { Maths Calculation Policy } \\
\text { 2022-2023 }
\end{gathered}
$$

Including Vocabulary Progression

Repton Manor Primary School Calculation Policy 2022-2023

This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children using concrete, pictorial and abstract representations.

- Concrete representation - a child is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is afoundation for conceptual understanding.
- Pictorial representation - a child has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a child is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Mathematics Mastery: At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures with concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in line with the requirements of the 2014 Primary National Curriculum.

How to use the policy: This mathematics policy is a guide for all staff. All teachers have been given the scheme of work from the White Rose Maths Hub and are required to base their planning around their year group's modules and not to move onto a higher year group's scheme work. These modules use the Singapore Maths Methods and are affiliated to the workings of the 2014 Maths Programme of Study. Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used.

For each of the four number operations, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Build it, Draw it, Solve it] is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Addition- Year 1

Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar. (Some children may still need to use real objects) Use part-part whole model	The Bar Model will be continued from EYFS as a method to support problem solving involving addition, continuing with the concrete representations and moving onto using pictorial representations of objects. Some children will also move onto the abstract. Pictorial (concrete) Abstract	5 Use the part-part whole diagram as shown above to move into the abstract. $\mathbf{4 + 3}=\mathbf{7}$
Represent and use number bonds and related subtraction facts within 20	(Some children may need to initially use real objects then move onto the representation, egg boxes may also be used to support this)		10 6 4$\begin{aligned} & 6+4=10 \\ & 4+6=10 \\ & 10-4=6 \\ & 10-6=4 \end{aligned}$ Bar Model Bar model and part-part whole to be used alongside abstract

Addition and subtraction of one-digit and two-digit numbers to 20 including 0 .		$6+3=9$ Start at the larger number on the number line and count on in ones.	$\begin{aligned} & 5+12=17 \\ & 17=12+5 \end{aligned}$
Start at the bigger number and counting on	Start with the larger number on the bead string and then count of to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 (The 'Make 10' strategy)		$3+9=$ Use pictures or a number line. Regroup or Partition the smaller number using the part part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
Vocabulary	add, more, plus, and, make, alt	her, total, equal to, equals, double, most, count on,	er line, balancing, part, part, whole

Addition- Year 2

Objective and Strategy	Concrete	Pictorial	Abstract
Adding 3 1-digit numbers	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if sossiblel then add on the third dizit.		$\begin{aligned} (4+7+6 & =10+7 \\ & =\begin{array}{l} \text { combine the two numbers } \\ \text { that make } 10 \text { and then add } \\ \text { on the remainder. } \end{array} \end{aligned}$
Adding a 2-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$

Adding a 2-digit number and multiples of 10	$25+10=35$ Explore that the ones digit does not change	Base 10 may be used above the number line initially. The calculation will be shown alongside the number line to see the connection	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Adding two 2-digit numbers (No re-grouping)	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. (Some children may not be ready for place value counters in Y 2) Numicon may also be used	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. Use number line and bridge ten using part whole if necessary. Base 10 may be used above the number line. The calculation will be shown alongside the number line to see the connection The Bar Model (Singapore maths) will be used to support problem solving moving onto the generalisation that $b+c=a$. Children will focus on using the abstract representation with the pictorial to support where necessary.	$\begin{gathered} 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$ Partitioning: Recording addition in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: $\begin{array}{r} 40+7 \\ 30+5 \\ \hline 70+12 \end{array}$
Vocabulary	add, more, plus, and, make, altogether, total, equal to,	uals, double, most, count on, number line, sum, boundary	units, partition, addition, column, tens

Column addition (with regrouping)		Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	$\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$ Children are to begin with the abstract: expanded form. For those children, that are confident after AFL, the below method should be used.
	Exchange ten ones for a ten. Model using Dienes, Numicon and place value counters.		$\begin{array}{r} 536 \\ +85 \\ \hline \frac{621}{11} \end{array}$
Vocabulary	addition add, more, and make, sum, total, altoge	ouble, near double, half, halve, tens bo	y, hundreds boundary

Addition- Year 4			
Objective and Strategy	Concrete Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. The calculation will be shown alongside the manipulative used to see the connection	Pictorial	Abstract
Using formal written methods of columnar addition where appropriate add numbers with up to 4 digits (with exchange)		Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.	$\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$ Continue from previous work to carry hundreds as well as tens.
Add decimals with 2 decimal places, including money.	Introduce decimal place value counters and model exchange for addition.		$£ 23 \cdot 59$ $+£ 7 \cdot 55$ $£ 31 \cdot 14$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.
Vocabulary	addition add, more, and make, sum, total, altogether,	uble, near double, half, halve, tens boun point	, hundreds boundary, decimal, decimal

Subtraction- EYFS			
Objectives	Concrete	Pictorial	Abstract
Knows that a group of things change in quantity when something is taken away Find one less from a group of five objects, then ten objects. In practical activities and discussion, beginning to use the vocabulary involved in subtracting. Using quantities and objects, they subtract two single digit numbers and count back to find the answer.	Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as snap cubes, Numicon, bead strings etc. Use visual supports such as ten frames, part part whole and subtraction mats, with the physical objects and resources that can be manipulated.	A group of pictures for children to cross out or cover quantities to support subtraction. Use visual supports such as ten frames, part part whole and bar model with pictures/icons.	A focus on symbols and numbers to form a calculation.$10-6=4$3 $?$ 7 $7-3=?$ * No expectation for children to be able to record a number sentence/addition calculation.

Subtraction- Year 1

Objective and Strategy	Concrete	Pictorial	Abstract
Subtract one-digit and two-digit numbers to 20, including 0. Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take ther away counting backwards as you go.	Count back on a number line or track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? (Use your fingers to help you)

Find the difference	Compare objects and amounts		Hannah has 12 sweets and her sister has 5.How many more does Hannah have than her sister?
Represent and use number bonds and related subtraction facts within 20 Part-part whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what sn the other part? $10-6=4$	Use a pictorial representation of objects to show the part-part whole model	5 10 Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?
Vocabulary	equal to, take, take-away, less, minus, subtract, leaves many left, how much less is...	tance between, how many more, how many fewer/	s than, most, least count back, how

Subtraction- Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Subtract a two-digit number and ones, a two-digit number andtens, two twodigit numbers Partitioning to subtract without re-grouping: 'Friendlynumbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping. The calculation will be shown alongside the manipulative used	Children draw representations of Dienes and cross off. b $43-21=22$	$43-21=22$ Recording subtraction in columns supports place value and prepares for formal written methods with larger numbers. Toward the end of the year, children move to more formal recording using partitioning method: e.g. $43-21=22$ 40 and 3 -20 and 1 20 and 2
Make ten strategy	Use a bead bar or bead strings to model counting to next ten and the rest.	 Use a number line to count on to next ten and then the rest.	$93-76=17$
Vocabulary	equal to, take, take-away, less, minus, subtract, leaves, left, how much less	ance between, how many more, how many fewe difference, count on, strategy, partition, ten	ess than, most, least count back, how many nits

Subtraction- Year 3

Column Subtraction (with exchanging)	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange. Column method (using base 10 and having to exchange) 45-26 1) Start by partitioning 45 2) Exchange one ten for ten more ones 3) Subtract the ones, then the tens. Now I can subtract my ones.	When confident, children can find their ownway to record the exchange/regrouping	Children should begin with the expanded form. Moving onto a more formal way as below (bottom picture).

Subtraction- Year 5/6

Multiplication-EYFS

Objectives	Concrete	Pictorial	Abstract
- Solve problems including doubling	Counting and Other maths resources for children to make 2 equal groups. Double 1 Physical and real life examples that encourage children to see concept of doubling as adding two equal groups.	Pictures and icons that encourage children to see concept of doubling as adding two equal groups.	$1+1=$ $7+7=$ $2+2=$ $8+8=$ $3+3=$ $9+9=$ $4+4=$ $10+10=$ $5+5=$ $11+11=$ $6+6=$ $12+12=$ Addition calculations to model adding two equal groups.

Multiplication- Year 1			
Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate do cedjing	Draw pictures to show how to double numbers Double 4 is 8	
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Namberaty Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,25,30 \end{gathered}$
Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.

		Use pictorial including number lines to solve problenere are 3 sweets in one bag. How many sweets are in 5 bags altogether?	
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.		$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$
Vocabulary	Groups of, lots of, times, array, altogether,		

Multiplication- Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Counting in multiples of $2,3,4,5$, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$111 111 111 111 $?$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Using the Inverse			
This should		8	$2 \times 4=8 \quad 2$
be taught			$8 \div 2=4$
alongside		42	$8 \div 4=2$
division, so	10	$\times \square=\square$	$8=2 \times 4$
pupils learn	18 1e	\times	$8=4 \times 2$
how they		\times	$2=8 \div 4$
alongside	(0) 0 10	$] \div$	$4=8 \div 2$
each other.		\div	Show all 8 related fact family sentences.
Vocabulary	Groups of, lots of, times, array, altoget	ly, multiplied by, repeate	times as big as, commutative.

Multiplication- Year 3			
Objective and Strategy	Concrete	Pictorial	Abstract
Multiplying two-digit number by a one digit number Grid method progressing to the formal method. Solving problems including missing number problems, integer scaling problems.	Show the link with arrays to first introduce the grid method. Move on to using Base 10 to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. Add up each column, starting with the ones making any exchanges needed. The calculation will be shown alongside the model chosen to see the connection	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers $4 x$ \square $=20$	Start with multiplying by one digit numbers and showing the clear addition TO x 0 alongside the grid. $18 \times 3=54$ Children to add up each column to find the answer.
Vocabulary	Groups of, lots of, times, array, altogether, up	y, multiplied by, repeated addition, sets	, times as big as, commutative, product, multiples of, scale

Multiplication- Year 4

Multiplication Year 5			
Objective and Strategy	Concrete	Pictorial	Abstract
Multiply numbers up to 4-digits by a one-digit number using the format written method, including long multiplication for 2-digit numbers Column multiplication for 3 and 4 digits $\times 1$ digit	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28	
Column multiplication (long multiplication)	Manipulatives may still be used with the corresponding long multiplication modelled alongside	Moving forward, multiply by a 2 digit number showing the different rows within the grid method. $24 \times 16=384$	24×6 on the first row. ($6 \times 4=24$, carrying the 2 for the 20 , then $6 x$ 2) 24×10 on the second row. Show multiplying by 10 by putting zero in the units first. $\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404 \\ 12340 \\ \hline 19,744 \end{array}$
Vocabulary	Groups of, lots of, times, array, altogethe scale up, inverse, derive, factor pairs, com	multiply, multiplied by, repeated addition, sets ite numbers, prime number, factors, squared,	oups, times as big as, commutative, product, multiples of,

Multiplication- Year 6

Division- EYFS

Objectives	Concrete	Pictorial	Abstract
Solve problems including halving and sharing. - Halving a whole, halving a quantity of objects. - Sharing a quantity of objects.	Children have the opportunity to physically cut objects, food or shapes in half.	Pictures and icons that encourage children to see concept of halving in relation to subitising, addition and subtraction knowledge. i.e. Knowing 4 is made of 2 groups of 2 , so half of 4 is 2 . Bar model with pictures or icons to support understanding of finding 2 equal parts of a number, to further understand how two halves make a whole. Pictures for children to create and visualise 3 or more equal groups.	

Division－Year 1					
Objective and Strategy	Concrete	Pictorial			Abstract
Division as sharing （sharing objects into groups）	I have 10 cubes，can you share them equally in 2 groups？	Children use bar modelling to show and support understanding．			Share 9 buns between three people． $9 \div 3=3$
Vocabulary	share，share equally，one each，two each．．．，group，groups of，lots of，array				

Division- Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96+3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you an dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide $\mathbf{2 8}$ into $\mathbf{7}$ groups. How many are in each group?
Vocabulary	share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over		

Divide 2digit numbers by a 1 digit number by partitioning into tens and ones using a pv grid	' Eva uses a place value grid and part-whole model to solve $66 \div 3$	See part- whole model	
Divide numbers that involve exchanging between the tens and ones. The answers donot have remainders.	Ron uses place value counters to divide 42 into three equal groups He shares the tens first and exchanges the remaining ten for ones. Then he shares the ones. $42 \div 3=14$	Annie uses a similar method to divide 42 by 3 Children may use pictorial representation for the pv counters, alongside the part-whole model Children use their times-tables to partition the number into multiples of the divisor.	$\begin{gathered} 96 \div 896 \\ \div 4 \\ 96 \div 3 \\ 96 \div 6 \end{gathered}$ Compare the statements using $<,>$ or $=$ $\begin{aligned} & 48 \div 4 \bigcirc 36 \div 3 \\ & 52 \div 4 \bigcirc 42 \div 3 \\ & 60 \div 3 \bigcirc 60 \div 4 \end{aligned}$

Division- Year 4			
Objective and Strategy	Concrete	Pictorial	Abstract
Divide up to 3 digit numbers by 1 digit. Short Division	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder $\frac{19}{4 \longdiv { 7 ^ { 3 } 6 }} \quad \frac{247}{3 \longdiv { 7 ^ { 1 } 4 ^ { 2 1 } }}$ Children should be aware that a 0 is used to keep place value, if the number is not divisible. $\begin{array}{r} 093 \\ 8 \longdiv { 7 ^ { 7 } 4 ^ { 1 } 4 } \end{array}$ Move onto divisions with a remainder. $$
Vocabulary	share, share equally, one each, two e inverse, derive	lots of, array, divide, divided by, divided into, division,	ing, number line, left, left over, product, division facts,

Division- Year 5			
Objective and Strategy	Concrete	Pictorial	Abstract
Divide at least 4 digit numbers by 1 digit. Interpret remainders appropriately for the context Short Division	 Use place value counters to divide using the bus stop method alongside Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Finally move into decimal places to divide the total accurately.
Vocabulary	share, share equally, one each, two each..., g inverse, derive, formal written method.	lots of, array, divide, divided by, divided into, division, gro	number line, left, left over, product, division facts,

Objective and Strategy	
Long Division	Step 1 - a remainder in the ones
h t 0	
	$4 \longdiv { 0 4 1 \mathrm { R } 1 }$
	$4 \longdiv { 1 6 5 }$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

$$
\begin{aligned}
& \text { th hto } \\
& 0400 \text { R7 } \\
& \text { 8) } 3207
\end{aligned}
$$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7

$$
4 \begin{array}{r}
h t o \\
061 \\
247 \\
\frac{-4}{3}
\end{array}
$$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

$$
\text { 4 } 4 \begin{array}{r}
\text { th } t \circ \\
0402 \\
1609 \\
\frac{-8}{1}
\end{array}
$$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t o	t 。
2	2	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
	$\frac{-4}{1}$	$\frac{-41}{18}$
Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens - －but there is a remainder！	To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten．	Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18 ．

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$=\frac{4}{18}$	－4 18	$\frac{-4}{18}$
	－18	－18
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

Minimal Resources required to support the CPA approach (depending on year group):

- 10 frames (including egg boxes)
- Straws/pipe cleaners
- Bead strings (to 20 and 100)
- Base 10/Dienes
- Place value grids
- Double-sided counters
- Part-part whole templates
- Place value counters (KS2)
- Multi-link cubes

